
Modern Microprocessor and Low-Level
Optimizations

Ivan Sorokin

2

About the Talk

Sometimes program optimization requires knowledge of how
CPU works:
● Why do these two similar functions differ so much in execution

time?
● Why does this minor change affect execution time so much?

The purpose of the talk is to introduce people to how CPU
works. In this talk we'll devise a model of a CPU that agrees with
some effects observable on real CPUs.

This is an introductory talk.
● Prefer breadth to depth.
● Assembly usage is minimized.

3

Plan

The algorithm of the talk:

Start with some CPU model.
Repeat:
● Observe some effect that disagrees with the model.
● Refine the model.

4

Just a Model

Important note: This is just a model.
● It will neither predict nor explain all effects observable on real

CPUs
● Intel and AMD publish details only of some aspects of their

products.
● About most parts of a CPU little is know for sure.

This is not a problem in practice.
● The most precise model is not necessarily the easiest to work

with.
● The most precise model of any CPU is that CPU itself.
● Most models need to be simplified to be operated effectively

on.

5

Intel or AMD

Do we model Intel or AMD CPUs?
● Both!
● Although in 90s there were many different CPU architectures,

now even CPUs of different vendor are remarkably similar.

In most cases there are strong reasons why a CPU behaves
one way or another.

6

Initial Model

CPU executes instructions one by one. The duration of the
computation is proportional to the number of instructions to be
executed.

7

Example #1

Is there any difference between these two pieces of code?

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[i][j] = 0;

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[j][i] = 0;

8

Example #1

Is there any difference between these two pieces of code?

It turned out there is. Let's plot a graph where:
Y axis — time taken divided by N²
X axis — N

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[i][j] = 0;

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[j][i] = 0;

9

Example #1

X axis — N Y axis — time taken divided by N²

10

Example #1

Changing iteration order causes 40x execution time difference!

What is the cause?
No, it is not because compiler used special instructions:

.L5:
 test rsi, rsi
 je .L3
 mov rdx, QWORD PTR [rdi+16]
 xor eax, eax
 add rdx, r8
.L4:
 add rax, 1
 mov BYTE PTR [rdx], 0
 add rdx, rcx
 cmp rax, rsi
 jne .L4
.L3:
 add r8, 1
 cmp r8, rcx
 jne .L5

.L5:
 test r9, r9
 je .L3
 mov rdx, QWORD PTR [rdi+16]
 lea rax, [rdx+rcx]
 add rdx, r9
 add rdx, rcx
.L4:
 mov BYTE PTR [rax], 0
 add rax, 1
 cmp rdx, rax
 jne .L4
.L3:
 add rsi, 1
 add rcx, r8
 cmp rsi, r8
 jne .L5

11

Example #1

Changing iteration order causes 40x execution time difference.

What is the cause?
Processor cache.

12

CPU Performance over Time

Source: J. Hennessy, D. Patterson — Computer Architecture: A
Quantitative Approach
Idea taken from: T. Albrecht — Pitfalls of Object Oriented
Programming

13

CPU and Memory Performance over Time

Source: J. Hennessy, D. Patterson — Computer Architecture: A
Quantitative Approach
Idea taken from: T. Albrecht — Pitfalls of Object Oriented
Programming

14

Memory Access Time Comparison

For modern Intel CPUs 4 instructions per cycle execution rate is
achievable and sustainable.

Memory access normally costs 200+ cycles.

Based on http://www.7-cpu.com/cpu/Haswell.html:

For i7-4770 (Haswell), 3.4 GHz: 230 cycles.
For 3.6 GHz E5-2699 v3 dual: 422 cycles.

http://www.7-cpu.com/cpu/Haswell.html

15

Pentium M Die

16

Ryzen Die

17

Cache Access Time

For modern Intel CPUs 4 instructions per cycle execution rate is
achievable and sustainable.

Based on http://www.7-cpu.com/cpu/Haswell.html:

For i7-4770 (Haswell), 3.4 GHz:
L1 access time: 4 cycles.
L2 access time: 12 cycles.
L3 access time: 36 cycles.
RAM access time: 230 cycles.

„Optimize for data first, then code. Memory access is probably
going to be your biggest bottleneck“ — T. Albrecht

T. Albrecht — Pitfalls of Object Oriented Programming

http://www.7-cpu.com/cpu/Haswell.html

18

Example #1

L2L1 L3

19

Powers of Two

For some reason powers of two are especially bad:

...
255 6.46553 5.87923
256 34.1074 5.74615
257 6.47127 5.87773
...
511 8.17188 5.83852
512 41.9089 5.86711
513 26.1207 5.86645
...
2047 46.632 5.90516
2048 67.9766 5.91165
2049 48.3231 5.90636
...

20

CPU Caches

CPU caches are implemented as a hashtable.

The keys are memory addresses.
The values are memory content.

The caches don't work on individual bytes. Accessing one byte
causes a whole block (called cache line) to be cached.

Typical cache line size is 64 bytes.

21

CPU Caches

…

64B 64B 64B 64B

64B 64B 64B 64B

64B 64B 64B 64B

64B 64B 64B 64B

…

64B 64B 64B 64B

Buckets

ABC

A typical hash function is just a
few low bits of an address (B)

Address
The number of elements in a
bucket is called associativity.

The lowest 6 bits of an address (A) are an
offset in 64-byte blocks

064

22

Power of Two Matrices

15x15 16x16

Different colors correspond to different buckets.

23

Cache Hierarchy

Designing a cache subsystem requires finding a balance
between:
● Cache line size
● Cache size (bigger caches have higher hit rate, but are slower)
● Associativity

24

Cache Hierarchy Example

Caches of some common CPUs:
Haswell i7-4770 Skylake i7-6700 Ryzen 7

L1d size 32 KB 32 KB 32 KB

L1d line size 64 B 64 B 64 B

L1d associativity 8-way 8-way 8-way

L1d access time 4 cycles 4 cycles 4 cycles

L2 size (per core) 256 KB 256 KB 512 KB

L2 line size 64 B 64 B 64 B (?)

L2 associativity 8-way 4-way * 8-way

L2 access time 12 cycles 12 cycles 17 cycles

L3 size (per core) 2 MB 2 MB 2 MB

L3 line size 64 B 64 B 64 B

L3 associativity 16-way 16-way 16-way

L3 access time 36 cycles 42 cycles 39-40 cycles

* https://stackoverflow.com/questions/37957181/skylake-l2-cache-
enhanced-by-reducing-associativity

25

Question

During array traversal only the first item of each cache line
causes a stall. Accessing the first item reads whole cache line
which make accessing other elements cheap.

Is this right?

26

Answer

During array traversal only the first item of each cache line
causes a stall. Accessing the first item reads whole cache line
which make accessing other elements cheap.

Is this right? Wrong.

Modern CPUs detect sequential memory access and actively
fetch data that is expected to be used next. This technique is
called prefetching.

27

Prefetching

„The Intel Pentium 4 can prefetch data into the second-level
cache from up to eight streams from eight different 4 KB
pages. Prefetching is invoked if there are two successive L2
cache misses to a page, and if the distance between those
cache blocks is less than 256 bytes. (The stride limit is 512
bytes on some models of the Pentium 4.) It won’t prefetch
across a 4 KB page boundary.“

Source: J. Hennessy, D. Patterson — Computer Architecture: A
Quantitative Approach

More recent Intel CPUs have 4 different prefetchers. Two
prefetch into L1 cache, and two prefetch into L2 and LLC
cache.

Source: Intel 64 and IA-32 Architectures Optimization Reference
Manual, section 2.3.5.4 Data Prefetching

28

Prefetching

● Prefetching trades memory bandwidth for reduced latency.
● Usually there is excessive memory bandwidth to spare and memory

bandwidth is easier to scale.

● With prefetching enabled the speed of an algorithm is
bounded by either CPU or RAM depending on which is
slower.
● Many simple SIMD-friendly algorithms are memory-bound, not CPU-

bound.

29

Best Practices

● Minimize the size your data
● The smaller the items are the more of them fits the cache/cache line.
● The smaller the items are the less memory bandwidth is needed.

● Store data sequentially (if it is accessed sequentially)
● Sequential access enables prefetching
● Accessing one element causes others to be cached too

● Keep „cold“ and „hot“ data separately

30

Example: Hash Tables

Keep „cold“ and „hot“ data separately.

Consider a hash table with open addressing. Should we store
key/value pair together or separately?

K1 V1 K2 V2 K4 V4K3 V3 K5 V5

K1 V1K2 V2K4 V4K3 V3K5 V5

31

Example: Hash Tables

Keep „cold“ and „hot“ data separately.

Consider a hash table with open addressing. Should we store
key/value pair together or separately?

It depends on the hit rate.
● If a high hit rate is expected, storing values together with keys

can minimize the number of cache misses
● If a low hit rate is expected, storing values separately can

conserve cache capacity for keys

K1 V1 K2 V2 K4 V4K3 V3 K5 V5

K1 V1K2 V2K4 V4K3 V3K5 V5

32

Best Practices

● Avoid indirections
● The location of the dereferenced object is generally unpredictable and

causes an extra cache miss
● The more objects are allocated the more pressure is put on the the

memory allocator
● Extra pointers increase the size of the data structures

● In some cases the elimination of indirections is harmful
● Avoid „inlining“ cold objects into hot
● These cases are rare in practice

33

Pointers

● Pointers are probably the most common objects in any
program

● Everything is made of pointers:
● std::vector consists of 3 pointers
● std::list consists of 2 pointers and one integer of pointer

size
● std::set, std::map consist of 1 pointer and one integer of

pointer size
● size_t, ptrdiff_t

● Most programs don't use more that 4GB of RAM. 64-bit
pointers only waste extra space.

● Can something be done about it?

34

x86 vs x86-64

● x86 has 32-bit pointers, but using x86 has its own downsides:
● Limited number of registers
● Baroque calling conventions
● Expensive PIC

35

x32 ABI

● With x32 ABI the program runs in 64-bit CPU mode using 32-
bit pointers.

x86 x32 x86-64

Pointers 4 bytes 8 bytes

Virtual memory 4 GB 128 TB

Integer registers 6 (PIC) 15

FP registers 8 16

64-bit arithmetic No Yes

FP arithmetic x87 SSE

Calling convention Stack Registers

PIC prologue 2-3 instructions None

Source: https://en.wikipedia.org/wiki/X32_ABI

36

x32 ABI

● x32 ABI is reported to be:
● 5-8% faster than x86-64 on SPEC CPU INT
● No difference with x86-64 on SPEC CPU FP
● 40% faster than x86-64 on 181.mcf (memory bound)

● 7-10% faster than x86 on SPEC CPU INT
● 5-11% faster than x86 on SPEC CPU FP
● 40% faster than x86 on 186.crafty (64-bit arithmetic)

Source: H. J. Lu, H. Peter Anvin, M. Girkar — X32 – A Native 32bit
ABI For X86-64
http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531
/original/x32-LPC-2011-0906.pptx

https://sites.google.com/site/x32abi/

http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531/original/x32-LPC-2011-0906.pptx
http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531/original/x32-LPC-2011-0906.pptx

37

Best Practices

● Optimize for common case

● Consider using small-object-optimized containers
● Improves data locality for common case (small number of items)
● Reduces the number of allocations

● Be aware of the downsides of small-object-optimized
containers
● Both overcounting and undercounting the expected number of items

waste some memory
● Using small-object-optimized containers usually (but not always)

increases the size of the enclosing objects
● Usually small-object-optimized containers are slower to access in terms

of CPU operations

38

3

fbstring

Small-object optimization doesn't necessarily increase the
size of the object.

data size capacityBig object: 1

SSmall object: 0m a l l s t \0

2S 0m a l l s t r \0

1S 0m a l l s t r i \0

\0S 0m a l l s t r i n

39

3

fbstring

The last byte serves triple purpose:
● Its highest bit is the selector whether the string is big
● Holds the number of free characters in the small case
● Serves as null-terminator if the string is small and full

data size capacityBig object: 1

TSmall object: 0i n y s t r \0

2T 0i n y s t r i \0

1T 0i n y s t r i n \0

\0T 0i n y s t r i n g

40

fbstring

On 64-bit system fbstring can store up to 23 chars in-place.

For big endian systems the layout is different, but the idea is the
same.

The real fbstring steals two highest bits of the capacity and
distinguishes between three case:
● Small string — in-place storage (<24 bytes)
● Medium string — dynamic storage (24 to 256 bytes)
● Large string — dynamic storage, copy-on-write (>256 bytes)

41

Best Practices

● Consider using small-object-optimized polymorphic wrappers
and discriminated unions
● Have the same up-/downsides as small-object optimization

● Not all alternatives have to be stored in-place
● Rare and big alternatives can have dynamic storage
● The library Dyno by Louis Dionne allows storage type customization

● In some cases writing your own polymorphic wrappers is
worth the trouble
● Don't forget hiding the bit-trickery behind a type-safe interface

42

Example

As an example let's design a class to store C++ unqualified
names.

There are multiple types of unqualified names:
● Identifier foo >99%
● Anonymous <0.1%
● Destructor ~foo <0.1%
● Operator operator+ <0.1%
● Coversion operator int <0.1%
● ...

For simplicity let's omit template names: foo<int>.

43

Example

struct ident_name
{

char const* data; // can not be nullptr
uint32_t size;
uint32_t hash;

};

struct destructor_name { /* same as ident_name */ };
struct anonymous_name {};
struct operator_name { enum operator_kind kind; };
struct conversion_name { qual_type type; };

44

Example

Polymorphic wrapper should be optimized for the most common
case

struct name
{

// non-nullptr for ident_name
// nullptr otherwise
char const* data;
union
{

// ident_name's case
struct { uint32_t size; uint32_t hash; };

// anything else's case
dynamic_name_storage* dynamic_storage;

};
};

size hashdata

nullptr dynamic_stg

ident_name

otherwise

45

Virtual Memory

The address that a program uses to access the memory is not
the same address that is used to access physical memory.

In this presentation let's call the address that the program uses a
virtual address. (*)

A CPU provides and an OS uses a mechanism to specify the
mapping from virtual to physical addresses.

* This is technically incorrect and the address should be called a
linear address. But for the sake of simplicity segmentation is ignored
in this presentation.

46

Virtual Memory

The process of mapping virtual addresses to physical is called
paging.

Paging involves grouping all virtual addresses and all physical
addresses into groups called pages. The size of a page is 4 KB
and pages are aligned to 4 KB.

47

Virtual Memory

4K
Process #1:

4K 4K 4K 4K 4K 4K ... 4K 4K
Process #2:

4K 4K 4K 4K 4K 4K ... 4K

4KPhysical memory: 4K 4K 4K 4K 4K 4K 4K ... 4K

CPU allows mapping any page of virtual address space to any page of
physical address space.

Different pages of virtual address space can be mapped to the same page of
physical address space.

Normally OS configures different mappings for different processes.

48

Page Tables

The mapping which page of virtual address space translates to which page
of physical address space is stored in 512-ary tree of bounded depth
(usually 3, but 2, 4 or 5 is possible).

Each level of this tree has its own name, but we'll call this tree collectively
page tables.

Each child of a node is indexed from 0 to 511.

49

Page Tables

...

... ...

... ...

4KPhysical memory: 4K 4K 4K 4K 4K 4K 4K ... 4K

063 12213039 Pointer to root node (CR3)Virtual address

512 items

50

Page Tables

063 12213039
Virtual address

The lowest 12 bits of address are an offset inside a page. They are the same
for physical and virtual addresses.

The highest 25 bits are unused and must be the same as the 38th bit of the
address (an address must be sign-extended on x86-64).

Besides the address of the child node each item holds flags (whether the
child is present, is the page writable, and etc).

OS keeps separate page tables for each process. During process switching
OS updates a pointer to the root (called CR3 register).

51

Page Tables

With paging enabled each memory access is turned into 4(!) memory
accesses. Obviously a 4-fold increase in number of memory accesses is
impractical.

CPUs have a special cache for virtual to physical translations, called TLB
(translation lookaside buffer).

On each memory access CPU queries both TLB and caches.

As other caches TLB has limited size and associativity.

52

Huge Pages

...

... ...

...

2MPhysical memory: 4K 4K 4K 4K ... 4K

063 12213039 Pointer to root node (CR3)Virtual address

512 items

53

Huge Pages

Large pages improve performance in three ways:
● They make TLB misses cheaper by decreasing the number of accessed

nodes
● They consume fewer resources of TLB
● The OS kernel spends less time in handling page faults

Different sources report different speedups ranging from 6% to 22%. (*)

* Andrea Arcangeli — Transparent Hugepage Support
https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcan
geli.pdf
Tobiasrieper — Improve your CPU Monero mining...
https://steemit.com/monero/@tobiasrieper/improve-your-cpu-monero-
xmr-mining-up-to-20-with-huge-pages

https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcangeli.pdf
https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcangeli.pdf

54

TLBs

Haswell i7-4770 Skylake i7-6700 Ryzen 7

4K pages, L1 64 items, 4-way 64 items, 4-way 64 items, full assoc.

4K pages, L2 1024 items, 8-way 1536 items, 12-way 1536 items, 8-way

2M pages, L1 32 items, 4-way 32 items, 4-way 64 items, full assoc.

2M pages, L2 1024 items, 8-way 1536 items, 12-way 1536 items, 2-way (?)

1G pages, L1 4 items 4 items, 4-way 64 items, full assoc.

1G pages, L2 16 items, 4-way

55

Pipelining

Assume that we have some boolean circuit.

*

Inputs

Output

56

Pipelining

Assume that we have some boolean circuit.

Sometimes the circuit can be split into several
stages connected by DC-latches.

The clock rate is determined by the stage with the
slowest signal propagation delay. If the circuit can
be split into 3 stages with similar propagation delay
the clock the clock rate can be increased 3 times.

Stage 1

Inputs

Output

DC-latches

Stage 2

DC-latches

Stage 3

57

Pipelining

With pipelining latency is increased only slightly while the throughput is
increased many times.

OP1

OP1

OP1

OP1 OP2 OP3 OP4 ...Sequential Execution:

Pipelined Execution:

Stage 1

Stage 2

Stage 3

OP2

OP2

OP2

OP3

OP3

OP3

OP4

OP4

OP4

...

58

Pipelining

Although modern CPUs are not pure pipelines, they share many
properties with pipelines.

Many instructions are in fly simultaneously at different stages of
execution. To some extent modern CPUs can be modelled as pipelines
of ~20 stages deep.

The problem is the instructions called „conditional branches“. The
conditional branch instruction is an instruction that selects depending on
some condition what is executed after it.

Usually it is not known if the condition is true until the late stage of the
execution of the condition branch.

59

Pipelining

Although modern CPUs are not pure pipelines, they share many
properties with pipelines.

Many instructions are in fly simultaneously at different stages of
execution. To some extent modern CPUs can be modelled as pipelines
of ~20 stages deep.

60

Example: Pentium M Pipeline

Although modern CPUs are not pure
pipelines, to some extent they can be
modelled as pipelines.

According to this definition Pentium M had
11 stages.

Pentium 4 (Willamette, Northwood) — 20.
Pentium 4 (Prescott, Cedar Mill) — 31.

Haswell — 14-19 stages depending on
how you count.

Pentium M pipeline

61

Conditional Branches

The problem is the instructions called „conditional jumps“. The
conditional branch instruction is an instruction that selects which
instruction is executed next after it depending on some condition.

Usually it is not known if the condition is true until the late stage of
execution of the condition jump.

Conditional jumps have two options depending on which instruction is
executed after next:
● The next instruction in memory order is executed (in this case the

jump is called not taken)
● The execution starts with the instruction specified in the conditional

jump (in this case the jump is called taken)

62

Conditional Branches

OP1

OP1

OP1

Pipelined Execution:

Stage 1

Stage 2

Stage 3

OP2

OP2

OP2

OP3

OP3

OP3

OP4

OP4

OP4

OP5

OP5

OP5

Just waiting for a conditional branch to complete causes a pipeline stall
for as many cycles as the pipeline depth is.

What if instead of stalling CPU some branch is executed and then after
conditional jump instruction is completed either:
● The instructions in wrong branch were executed, the results of the

computation need to be discarded, and the execution need to be
restarted

● The instructions in the right branch were executed, no special action is
needed.

OP6

OP6

OP6

63

Branch Prediction

A branch predictor is the part of a CPU that predicts if the specific
branch should be taken or not.

If branch is predicted correctly no (or very little) time is wasted. If branch
is mispredicted the number of cycles corresponding to the depth of
pipeline is wasted.

Both Intel and AMD publish little information on how exactly their branch
predictors work.

The branch predictors of modern CPUs work in a such way that no
simple short sequence of branches exhibit bad behavior.

64

Branch Prediction

To circumvent branch predictor I'll base the branching behavior of a
program on a random number generator.

Linear Feedback Shift Register:

1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1

xor

output

65

Branch Prediction

To circumvent branch predictor I'll base the branching behavior of a
program on a random number generator.

Linear Feedback Shift Register:

unsigned lfsr = 0xace1;

for (unsigned i = 0; i != 1000000000; ++i)
{

unsigned lsb = lfsr & 1; /* Get LSB (i.e., the output bit). */
lfsr >>= 1; /* Shift register */
if (lsb) /* This branch is expected to be */

lfsr ^= 0xb400; /* often mispredicted */
}

66

Branch Prediction

Let's compare the version with a branch with two branchless versions.

unsigned lsb = lfsr & 1;
lfsr >>= 1;
if (lsb)
 lfsr ^= 0xb400;

1.97 seconds

unsigned lsb = lfsr & 1;
lfsr >>= 1;
lfsr ^= 0xb400 * lsb;

1.64 seconds

unsigned lsb = lfsr & 1;
lfsr >>= 1;
lfsr ^= 0xB400 & -lsb;

1.32 seconds

$ chrt -f 99 perf stat ./a.out

Branches are 20% slower than multiplication and 50% slower than bitwise
and and negation. Anyone disagrees with the result?

67

Branch Prediction

$ sudo chrt -f 99 perf stat ./demo-branch-o2

 Performance counter stats for './demo-branch-o2':

 1977,494719 task-clock (msec) # 0,993 CPUs utilized
 18 context-switches # 0,009 K/sec
 0 cpu-migrations # 0,000 K/sec
 115 page-faults # 0,058 K/sec
 6 056 788 736 cycles # 3,063 GHz
 9 012 566 316 instructions # 1,49 insn per cycle
 1 002 097 766 branches # 506,751 M/sec
 58 221 branch-misses # 0,01% of all branches

 1,990458396 seconds time elapsed

Wait, only 1 billion of branches?

68

Branch Prediction

$ sudo chrt -f 99 perf stat ./demo-branch-o2
 1977,494719 task-clock (msec) # 0,993 CPUs utilized
 6 056 788 736 cycles # 3,063 GHz
 9 012 566 316 instructions # 1,49 insn per cycle
 1 002 097 766 branches # 506,751 M/sec
 58 221 branch-misses # 0,01% of all branches

$ sudo chrt -f 99 perf stat ./demo-mul-o2
 1638,604757 task-clock (msec) # 0,997 CPUs utilized
 5 031 149 137 cycles # 3,070 GHz
 7 010 510 218 instructions # 1,39 insn per cycle
 1 001 738 182 branches # 611,336 M/sec
 31 210 branch-misses # 0,00% of all branches

$ sudo chrt -f 99 perf stat ./demo-negand-o2
 1320,836315 task-clock (msec) # 0,997 CPUs utilized
 4 047 430 739 cycles # 3,064 GHz
 8 009 734 001 instructions # 1,98 insn per cycle
 1 001 594 794 branches # 758,303 M/sec
 31 070 branch-misses # 0,00% of all branches

69

Conditional Move

.L3:
mov ecx, ebx
shr ebx
mov edx, ebx
and ecx, 1
xor dh, 180
test ecx, ecx
cmovne ebx, edx
sub eax, 1
jne .L3

The compiler replaced the if with a conditional move:

.L2:
mov edx, ebx
and ebx, 1
imul ebx, ebx, 46080
shr edx
xor ebx, edx
sub eax, 1
jne .L2

.L2:
mov edx, ebx
and ebx, 1
neg ebx
shr edx
and ebx, 46080
xor ebx, edx
sub eax, 1
jne .L2

70

Conditional Move

GCC has a flag to disable conditional moves:

$ g++ -O2 -fno-if-conversion -fno-if-conversion2 demo.cpp

$ sudo chrt -f 99 perf stat ./demo-branch-noifconv

 Performance counter stats for './demo-branch-noifconv':

 3823,392765 task-clock (msec) # 1,000 CPUs
 0 context-switches # 0,000 K/sec
 0 cpu-migrations # 0,000 K/sec
 102 page-faults # 0,027 K/sec
 11 804 910 900 cycles # 3,088 GHz
 7 517 019 848 instructions # 0,64 insn per cycle
 2 002 890 565 branches # 523,852 M/sec
 500 409 199 branch-misses # 24,98% of all branches

 3,823970930 seconds time elapsed

71

Jump Tables

Often writing interpreters and lexers/parsers involves a pattern like this:

for (;;)
{
 switch (*c++)
 {
 case OP_1: /* ... */ break;
 case OP_2: /* ... */ break;
 case OP_3: /* ... */ break;
 case OP_4: /* ... */ break;
 }
}

It turned out this is not the most efficient way to execute interpreter on
modern CPUs.

72

Jump Tables

Often the input is not a random sequence of items. Some items are more
likely to be followed by others.

static void* const dispatch_table[] =
 {&&do_1, &&do_2, &&do_3, &&do_4};
#define dispatch() goto *dispatch_table[*c++];

do_1:
 /* ... */
 dispatch();
do_2:
 /* ... */
 dispatch();
do_3:
 /* ... */
 dispatch();
do_4:
 /* ... */
 dispatch(); http://www.emulators.com/docs/nx25_nostradamus.htm

E. Bendersky — Computed goto for efficient dispatch tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-
dispatch-tables

http://www.emulators.com/docs/nx25_nostradamus.htm

73

Jump Tables

Jump tables helps in two ways
● They reduce the number of jumps
● They helps the branch predictor to detect patterns in the input data

BB_0

OP_1 OP_2 OP_2 OP_1 OP_2 OP_2

74

Best Practices

Use PGO
● Unless you write an interpreter (or lexer), let the compiler figure out what

to do with branches

Some projects use __builtin_expect:
#define likely(x) __builtin_expect((x),1)
#define unlikely(x) __builtin_expect((x),0)

There is some controversy around it, but it has some value in case PGO is
not available.

There is a proposed C++20 attribute [[likely]].

Clang provides __builtin_unpredictable, to mark the branch
conditions that can not be predicted by hardware logic.

75

Example

Consider the following code:

void count_huffman_weights(char const* src, size_t size)
{
 uint32_t count[256] = {};

 for (size_t i = 0; i != size; ++i)
 ++count[src[i]];
}

Source: Counting bytes fast — little trick from FSE
http://fastcompression.blogspot.ru/2014/09/counting-bytes-fast-little-
trick-from.html

76

Example

Consider the following code:

void count_huffman_weights(char const* src, size_t size)
{
 uint32_t count[256] = {};

 for (size_t i = 0; i != size; ++i)
 ++count[src[i]];
}

It turned out that the runtime of this function is highly sensitive
to the input values.

77

Example

Running it on uniform data we get:

$ sudo chrt -f 99 ./a.out -b100 -P0
*** FSE speed analyzer 64-bits, by Yann Collet (Feb 18 2017) ***
Generating 48 KB with P=0.50%
^C-trivialCount : 1613.9 MB/s

While running it on the data where all values are the same we
get:

$ sudo chrt -f 99 ./a.out -b100 -P100
*** FSE speed analyzer 64-bits, by Yann Collet (Feb 18 2017) ***
Generating 48 KB with P=100.00%
^C-trivialCount : 512.7 MB/s

78

Haswell Microarchitecture

Source: https://en.wikichip.org/wiki/intel/microarchitectures/haswell

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(32 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (56 µOPs)

L2 Cache
256KiB 8-W

ay

U
nifed STLB

To L3

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unifed Reservation Station (RS)

(60 entries)

Integer Physical Register File
(168 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

INT Vect ALU
INT Vect MUL

FP FMA
FP MUL
FP DIV
Branch

INT ALU
INT MUL

INT Vect ALU
FP ADD
FP FMA
FP MUL
Bit Scan

INT ALU
Vect Shuffle
INT Vect ALU

AES

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(42 entries)
Store Buffer & Forwarding

32
B/

cy
cl

e

µOPµOPµOPµOPµOPµOPµOPµOP

(40, 2x20 entries)

µOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

Stack
Engine

(SE)
Adder Adder Adder

1-4 µOPs µOP µOPµOP

4-Way Decode

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

4 µOPs

 Loop Stream
Detector (LSD)

Register Alias Table (RAT) 4 µOP

Branch Order Buffer
(BOB) (48-entry)

Rename / Allocate / Retirement
ReOrder Buffer (192 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

32
B/

cy
cl

e

32B/cycle

256bit/cycle

Load Buffer
(72 entries)

4 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

se
s (C

D
B

s)

Int

In
t V

e
ct

FP

Load

Store

79

Haswell Execution Engine

Source: https://en.wikichip.org/wiki/intel/microarchitectures/haswell

80

Execution Engine

CPU detects dependencies between instructions and execute
them in right order.

Slow instructions like memory accesses and division can be
overtaken by fast ones.

The execution time is determined by
● The critical path
● The availability of execution units

81

Dependency DAG

Compilers try to reassociate operations to enable more
instruction level parallelism and to shorten critical path:

int f(int a, int b, int c, int d)
{
 return a * b * c * d;
}

f:
 imul edi, esi
 imul edx, ecx
 imul edx, edi
 mov eax, edx
 ret

82

Dependency DAG

Compilers try to reassociate operations to enable more
instruction level parallelism and to shorten critical path:

a b c d

*

*

*

a b c d

*

*

*

83

Example

void count_huffman_weights(char const* src, size_t size)
{
 uint32_t count[256] = {0};

 for (size_t i = 0; i != size; ++i)
 ++count[src[i]];
}

Let me rewrite our original example into individual operations:

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump

84

Example

Obviously the branch is predictable. So the execution engine
get the following steam of instructions:

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
...

85

Example

Can the load of the next iteration be reordered with the store of
the previous? It depends on whether they references the same
address.

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
...

86

Speculative Loads

Usually loads doesn't alias preceding stores. Therefore CPU
tries to start executing them earlier. It does so speculatively. In
case the load does alias the preceding store execution need to
be restarted.

87

Dependency chain

In non-aliasing case the dependency chain looks like this:

inc i

load src[i]

load count[val]

inc tmp

cmp/jcc inc i

cmp/jcc inc i

cmp/jccstore src[val]

load src[i]

load count[val]

inc tmp

store src[val]

load src[i]

load count[val]

inc tmp

store src[val]

88

Dependency chain

In non-aliasing case the dependency chain looks like this:

inc i

load src[i]

load count[val]

inc tmp

cmp/jcc inc i

cmp/jcc

inc i

cmp/jcc

store src[val]
load src[i]

load count[val]

inc tmp

store src[val] load src[i]

load count[val]

inc tmp

store src[val]

89

Improved Version

Having this information in mind the original algorithm can be
improved:

void count_huffman_weights_improved(char const* src, size_t size)
{
 uint32_t count[8][256] = {};

 size = size / 8 * 8;
 for (size_t i = 0; i < size;)

{
 ++count[0][src[i++]]; ++count[1][src[i++]]; ++count[2][src[i++]];
 ++count[3][src[i++]]; ++count[4][src[i++]]; ++count[5][src[i++]];
 ++count[6][src[i++]]; ++count[7][src[i++]];

}
}

90

Improved Version

$ sudo chrt -f 99 ./a.out -b101 -P100
*** FSE speed analyzer 64-bits, by Yann Collet (Jan 24 2018) ***
Generating 48 KB with P=100.00%
101#count8 : 1486.7 MB/s (49152)

$ sudo chrt -f 99 ./a.out -b101 -P0
*** FSE speed analyzer 64-bits, by Yann Collet (Jan 24 2018) ***
Generating 48 KB with P=0.50%
101#count8 : 1766.4 MB/s (267)

91

Best Practices

Instruction scheduling is the task of the compiler.
● There is little we can or should do

In some cases compiler assume that pointers can alias while in
fact they can not. This causes creating a new critical path.
● It's difficult to give a guidance where this may happen.
● Usually can be found by profiling.

92

Final Thought

The fastest operation is no operation.
● Often it is easier to eliminate some operations completely

than to optimize them.

93

References

J. Shen, M. Lipasti — Modern
Processor Design: Fundamentals
of Superscalar Processors

J. Hennessy, D. Patterson —
Computer Architecture: A
Quantitative Approach

94

References

● T. Albrecht — Pitfalls of Object Oriented Programming
● https://stackoverflow.com/questions/25078285/replacing-a-32-

bit-loop-count-variable-with-64-bit-introduces-crazy-perform
ance

● http://stackoverflow.com/questions/11227809/why-is-processin
g-a-sorted-array-faster-than-an-unsorted-array

● http://info.prelert.com/blog/cpp-stdstring-implementations
● Peter Steinbach — The Performance Addict's Toolbox

(Meeting C++ 2017)
● Nicholas Ormrod — The strange details of std::string at

Facebook (CppCon 2016)
● Chandler Carruth — Efficiency with Algorithms, Performance

with Data Structures (CppCon 2014)
●

https://stackoverflow.com/questions/25078285/replacing-a-32-bit-loop-count-variable-with-64-bit-introduces-crazy-performance
https://stackoverflow.com/questions/25078285/replacing-a-32-bit-loop-count-variable-with-64-bit-introduces-crazy-performance
https://stackoverflow.com/questions/25078285/replacing-a-32-bit-loop-count-variable-with-64-bit-introduces-crazy-performance
http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-unsorted-array
http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-unsorted-array
http://info.prelert.com/blog/cpp-stdstring-implementations

95

References

● Sean Parent — Inheritance Is The Base Class of Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inherita
nce-Is-The-Base-Class-of-Evil

● Louis Dionne — Runtime Polymorphism: Back to the Basics
(CppCon 2017)

● https://github.com/ldionne/dyno

https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil

96

References

● E. Bendersky — Computed goto for efficient dispatch tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-eff
icient-dispatch-tables

● D. Michoka — The Common CPU Interpreter Loop Revisited
http://www.emulators.com/docs/nx25_nostradamus.htm

https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
http://www.emulators.com/docs/nx25_nostradamus.htm

97

Thank you!

Thank you!

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59
	Страница 60
	Страница 61
	Страница 62
	Страница 63
	Страница 64
	Страница 65
	Страница 66
	Страница 67
	Страница 68
	Страница 69
	Страница 70
	Страница 71
	Страница 72
	Страница 73
	Страница 74
	Страница 75
	Страница 76
	Страница 77
	Страница 78
	Страница 79
	Страница 80
	Страница 81
	Страница 82
	Страница 83
	Страница 84
	Страница 85
	Страница 86
	Страница 87
	Страница 88
	Страница 89
	Страница 90
	Страница 91
	Страница 92
	Страница 93
	Страница 94
	Страница 95
	Страница 96
	Страница 97

