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About the Talk

Sometimes program optimization requires knowledge of how 
CPU works:
● Why do these two similar functions differ so much in execution 

time?
● Why does this minor change affect execution time so much?

The purpose of the talk is to introduce people to how CPU 
works. In this talk we'll devise a model of a CPU that agrees with 
some effects observable on real CPUs.

This is an introductory talk.
● Prefer breadth to depth.
● Assembly usage is minimized.
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Plan

The algorithm of the talk:

Start with some CPU model.
Repeat:
● Observe some effect that disagrees with the model.
● Refine the model. 
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Just a Model

Important note: This is just a model.
● It will neither predict nor explain all effects observable on real 

CPUs
● Intel and AMD publish details only of some aspects of their 

products.
● About most parts of a CPU little is know for sure.

This is not a problem in practice.
● The most precise model is not necessarily the easiest to work 

with.
● The most precise model of any CPU is that CPU itself.
● Most models need to be simplified to be operated effectively 

on.
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Intel or AMD

Do we model Intel or AMD CPUs?
● Both!
● Although in 90s there were many different CPU architectures, 

now even CPUs of different vendor are remarkably similar.

In most cases there are strong reasons why a CPU behaves 
one way or another.
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Initial Model

CPU executes instructions one by one. The duration of the 
computation is proportional to the number of instructions to be 
executed. 
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Example #1

Is there any difference between these two pieces of code?

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[i][j] = 0;

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[j][i] = 0;
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Example #1

Is there any difference between these two pieces of code?

It turned out there is. Let's plot a graph where:
Y axis — time taken divided by N²
X axis — N

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[i][j] = 0;

char a[N][N];

for (size_t i = 0; i != N; ++i)
for (size_t j = 0; j != N; ++j)

a[j][i] = 0;
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Example #1

X axis — N Y axis — time taken divided by N²



10

Example #1

Changing iteration order causes 40x execution time difference!

What is the cause?
No, it is not because compiler used special instructions:

.L5:
  test rsi, rsi
  je .L3
  mov rdx, QWORD PTR [rdi+16]
  xor eax, eax
  add rdx, r8
.L4:
  add rax, 1
  mov BYTE PTR [rdx], 0
  add rdx, rcx
  cmp rax, rsi
  jne .L4
.L3:
  add r8, 1
  cmp r8, rcx
  jne .L5

.L5:
  test r9, r9
  je .L3
  mov rdx, QWORD PTR [rdi+16]
  lea rax, [rdx+rcx]
  add rdx, r9
  add rdx, rcx
.L4:
  mov BYTE PTR [rax], 0
  add rax, 1
  cmp rdx, rax
  jne .L4
.L3:
  add rsi, 1
  add rcx, r8
  cmp rsi, r8
  jne .L5
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Example #1

Changing iteration order causes 40x execution time difference.

What is the cause?
Processor cache.
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CPU Performance over Time

Source: J. Hennessy, D. Patterson — Computer Architecture: A 
Quantitative Approach
Idea taken from: T. Albrecht — Pitfalls of Object Oriented 
Programming
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CPU and Memory Performance over Time

Source: J. Hennessy, D. Patterson — Computer Architecture: A 
Quantitative Approach
Idea taken from: T. Albrecht — Pitfalls of Object Oriented 
Programming
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Memory Access Time Comparison

For modern Intel CPUs 4 instructions per cycle execution rate is 
achievable and sustainable.

Memory access normally costs 200+ cycles.

Based on http://www.7-cpu.com/cpu/Haswell.html:

For i7-4770 (Haswell), 3.4 GHz: 230 cycles.
For 3.6 GHz E5-2699 v3 dual: 422 cycles.

http://www.7-cpu.com/cpu/Haswell.html
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Pentium M Die
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Ryzen Die
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Cache Access Time

For modern Intel CPUs 4 instructions per cycle execution rate is 
achievable and sustainable.

Based on http://www.7-cpu.com/cpu/Haswell.html:

For i7-4770 (Haswell), 3.4 GHz:
L1 access time: 4 cycles.
L2 access time: 12 cycles.
L3 access time: 36 cycles.
RAM access time: 230 cycles.

„Optimize for data first, then code. Memory access is probably 
going to be your biggest bottleneck“ — T. Albrecht

T. Albrecht — Pitfalls of Object Oriented Programming

http://www.7-cpu.com/cpu/Haswell.html
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Example #1

L2L1 L3
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Powers of Two

For some reason powers of two are especially bad:

...
255 6.46553 5.87923
256 34.1074 5.74615
257 6.47127 5.87773
... 
511 8.17188 5.83852
512 41.9089 5.86711
513 26.1207 5.86645
...
2047 46.632 5.90516
2048 67.9766 5.91165
2049 48.3231 5.90636
...
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CPU Caches

CPU caches are implemented as a hashtable.

The keys are memory addresses.
The values are memory content.

The caches don't work on individual bytes. Accessing one byte 
causes a whole block (called cache line) to be cached.

Typical cache line size is 64 bytes.
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CPU Caches

…

64B 64B 64B 64B

64B 64B 64B 64B

64B 64B 64B 64B

64B 64B 64B 64B

…

64B 64B 64B 64B

Buckets

ABC

A typical hash function is just a 
few low bits of an address (B)

Address
The number of elements in a 
bucket is called associativity.

The lowest 6 bits of an address (A) are an 
offset in 64-byte blocks

064
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Power of Two Matrices

15x15 16x16

Different colors correspond to different buckets.
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Cache Hierarchy

Designing a cache subsystem requires finding a balance 
between:
● Cache line size
● Cache size (bigger caches have higher hit rate, but are slower)
● Associativity
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Cache Hierarchy Example

Caches of some common CPUs:
Haswell i7-4770 Skylake i7-6700 Ryzen 7

L1d size 32 KB 32 KB 32 KB

L1d line size 64 B 64 B 64 B

L1d associativity 8-way 8-way 8-way

L1d access time 4 cycles 4 cycles 4 cycles

L2 size (per core) 256 KB 256 KB 512 KB

L2 line size 64 B 64 B 64 B (?)

L2 associativity 8-way 4-way * 8-way

L2 access time 12 cycles 12 cycles 17 cycles

L3 size (per core) 2 MB 2 MB 2 MB

L3 line size 64 B 64 B 64 B

L3 associativity 16-way 16-way 16-way

L3 access time 36 cycles 42 cycles 39-40 cycles

* https://stackoverflow.com/questions/37957181/skylake-l2-cache-
enhanced-by-reducing-associativity
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Question

During array traversal only the first item of each cache line 
causes a stall. Accessing the first item reads whole cache line 
which make accessing other elements cheap.

Is this right?
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Answer

During array traversal only the first item of each cache line 
causes a stall. Accessing the first item reads whole cache line 
which make accessing other elements cheap.

Is this right? Wrong.

Modern CPUs detect sequential memory access and actively 
fetch data that is expected to be used next. This technique is 
called prefetching.
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Prefetching

„The Intel Pentium 4 can prefetch data into the second-level 
cache from up to eight streams from eight different 4 KB 
pages. Prefetching is invoked if there are two successive L2 
cache misses to a page, and if the distance between those 
cache blocks is less than 256 bytes. (The stride limit is 512 
bytes on some models of the Pentium 4.) It won’t prefetch 
across a 4 KB page boundary.“

Source: J. Hennessy, D. Patterson — Computer Architecture: A 
Quantitative Approach

More recent Intel CPUs have 4 different prefetchers. Two 
prefetch into L1 cache, and two prefetch into L2 and LLC 
cache.

Source: Intel 64 and IA-32 Architectures Optimization Reference 
Manual, section 2.3.5.4 Data Prefetching
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Prefetching

● Prefetching trades memory bandwidth for reduced latency.
● Usually there is excessive memory bandwidth to spare and memory 

bandwidth is easier to scale.

● With prefetching enabled the speed of an algorithm is 
bounded by either CPU or RAM depending on which is 
slower.
● Many simple SIMD-friendly algorithms are memory-bound, not CPU-

bound.
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Best Practices

● Minimize the size your data
● The smaller the items are the more of them fits the cache/cache line.
● The smaller the items are the less memory bandwidth is needed.

● Store data sequentially (if it is accessed sequentially)
● Sequential access enables prefetching
● Accessing one element causes others to be cached too

● Keep „cold“ and „hot“ data separately
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Example: Hash Tables

Keep „cold“ and „hot“ data separately.

Consider a hash table with open addressing. Should we store 
key/value pair together or separately?

K1 V1 K2 V2 K4 V4K3 V3 K5 V5

K1 V1K2 V2K4 V4K3 V3K5 V5
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Example: Hash Tables

Keep „cold“ and „hot“ data separately.

Consider a hash table with open addressing. Should we store 
key/value pair together or separately?

It depends on the hit rate.
● If a high hit rate is expected, storing values together with keys 

can minimize the number of cache misses
● If a low hit rate is expected, storing values separately can 

conserve cache capacity for keys

K1 V1 K2 V2 K4 V4K3 V3 K5 V5

K1 V1K2 V2K4 V4K3 V3K5 V5
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Best Practices

● Avoid indirections
● The location of the dereferenced object is generally unpredictable and 

causes an extra cache miss
● The more objects are allocated the more pressure is put on the the 

memory allocator
● Extra pointers increase the size of the data structures

● In some cases the elimination of indirections is harmful
● Avoid „inlining“ cold objects into hot
● These cases are rare in practice
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Pointers

● Pointers are probably the most common objects in any 
program

● Everything is made of pointers:
● std::vector consists of 3 pointers
● std::list consists of 2 pointers and one integer of pointer 

size
● std::set, std::map consist of 1 pointer and one integer of 

pointer size
● size_t, ptrdiff_t

● Most programs don't use more that 4GB of RAM. 64-bit 
pointers only waste extra space.

● Can something be done about it?
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x86 vs x86-64

● x86 has 32-bit pointers, but using x86 has its own downsides:
● Limited number of registers
● Baroque calling conventions
● Expensive PIC
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x32 ABI

● With x32 ABI the program runs in 64-bit CPU mode using 32-
bit pointers.

x86 x32 x86-64

Pointers 4 bytes 8 bytes

Virtual memory 4 GB 128 TB

Integer registers 6 (PIC) 15

FP registers 8 16

64-bit arithmetic No Yes

FP arithmetic x87 SSE

Calling convention Stack Registers

PIC prologue 2-3 instructions None

Source: https://en.wikipedia.org/wiki/X32_ABI
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x32 ABI

● x32 ABI is reported to be:
● 5-8% faster than x86-64 on SPEC CPU INT
● No difference with x86-64 on SPEC CPU FP
● 40% faster than x86-64 on 181.mcf (memory bound)

● 7-10% faster than x86 on SPEC CPU INT
● 5-11% faster than x86 on SPEC CPU FP
● 40% faster than x86 on 186.crafty (64-bit arithmetic)

Source: H. J. Lu, H. Peter Anvin, M. Girkar — X32 – A Native 32bit 
ABI For X86-64 
http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531
/original/x32-LPC-2011-0906.pptx

https://sites.google.com/site/x32abi/

http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531/original/x32-LPC-2011-0906.pptx
http://www.linuxplumbersconf.net/2011/ocw//system/presentations/531/original/x32-LPC-2011-0906.pptx
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Best Practices

● Optimize for common case

● Consider using small-object-optimized containers
● Improves data locality for common case (small number of items)
● Reduces the number of allocations

● Be aware of the downsides of small-object-optimized 
containers
● Both overcounting and undercounting the expected number of items 

waste some memory
● Using small-object-optimized containers usually (but not always) 

increases the size of the enclosing objects
● Usually small-object-optimized containers are slower to access in terms 

of CPU operations
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3

fbstring

Small-object optimization doesn't necessarily increase the 
size of the object.

data size capacityBig object: 1

SSmall object: 0m a l l s t \0

2S 0m a l l s t r \0

1S 0m a l l s t r i \0

\0S 0m a l l s t r i n
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3

fbstring

The last byte serves triple purpose:
● Its highest bit is the selector whether the string is big
● Holds the number of free characters in the small case
● Serves as null-terminator if the string is small and full

data size capacityBig object: 1

TSmall object: 0i n y s t r \0

2T 0i n y  s t r i \0

1T 0i n y s t r i n \0

\0T 0i n y s t r i n g
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fbstring

On 64-bit system fbstring can store up to 23 chars in-place.

For big endian systems the layout is different, but the idea is the 
same.

The real fbstring steals two highest bits of the capacity and 
distinguishes between three case:
● Small string — in-place storage (<24 bytes)
● Medium string — dynamic storage (24 to 256 bytes)
● Large string — dynamic storage, copy-on-write (>256 bytes)
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Best Practices

● Consider using small-object-optimized polymorphic wrappers 
and discriminated unions
● Have the same up-/downsides as small-object optimization

● Not all alternatives have to be stored in-place
● Rare and big alternatives can have dynamic storage
● The library Dyno by Louis Dionne allows storage type customization

● In some cases writing your own polymorphic wrappers is 
worth the trouble
● Don't forget hiding the bit-trickery behind a type-safe interface
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Example

As an example let's design a class to store C++ unqualified 
names.

There are multiple types of unqualified names:
● Identifier foo >99%
● Anonymous <0.1%
● Destructor ~foo <0.1%
● Operator operator+ <0.1%
● Coversion operator int <0.1%
● ...

For simplicity let's omit template names: foo<int>.
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Example

struct ident_name
{

char const* data; // can not be nullptr
uint32_t size;
uint32_t hash;

};

struct destructor_name { /* same as ident_name */ };
struct anonymous_name {};
struct operator_name { enum operator_kind kind; };
struct conversion_name { qual_type type; };
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Example

Polymorphic wrapper should be optimized for the most common 
case

struct name
{

// non-nullptr for ident_name
// nullptr otherwise
char const* data;
union
{

// ident_name's case
struct { uint32_t size; uint32_t hash; };

// anything else's case
dynamic_name_storage* dynamic_storage;

};
};

size hashdata

nullptr dynamic_stg

ident_name

otherwise
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Virtual Memory

The address that a program uses to access the memory is not 
the same address that is used to access physical memory.

In this presentation let's call the address that the program uses a 
virtual address. (*)

A CPU provides and an OS uses a mechanism to specify the 
mapping from virtual to physical addresses.

* This is technically incorrect and the address should be called a 
linear address. But for the sake of simplicity segmentation is ignored 
in this presentation.
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Virtual Memory

The process of mapping virtual addresses to physical is called 
paging.

Paging involves grouping all virtual addresses and all physical 
addresses into groups called pages. The size of a page is 4 KB 
and pages are aligned to 4 KB.
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Virtual Memory

4K
Process #1:

4K 4K 4K 4K 4K 4K ... 4K 4K
Process #2:

4K 4K 4K 4K 4K 4K ... 4K

4KPhysical memory: 4K 4K 4K 4K 4K 4K 4K ... 4K

CPU allows mapping any page of virtual address space to any page of 
physical address space.

Different pages of virtual address space can be mapped to the same page of 
physical address space.

Normally OS configures different mappings for different processes.
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Page Tables

The mapping which page of virtual address space translates to which page 
of physical address space is stored in 512-ary tree of bounded depth 
(usually 3, but 2, 4 or 5 is possible).

Each level of this tree has its own name, but we'll call this tree collectively 
page tables.

Each child of a node is indexed from 0 to 511.
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Page Tables

...

... ...

... ...

4KPhysical memory: 4K 4K 4K 4K 4K 4K 4K ... 4K

063 12213039 Pointer to root node (CR3)Virtual address

512 items
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Page Tables

063 12213039
Virtual address

The lowest 12 bits of address are an offset inside a page. They are the same 
for physical and virtual addresses.

The highest 25 bits are unused and must be the same as the 38th bit of the 
address (an address must be sign-extended on x86-64).

Besides the address of the child node each item holds flags (whether the 
child is present, is the page writable, and etc).

OS keeps separate page tables for each process. During process switching 
OS updates a pointer to the root (called CR3 register).
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Page Tables

With paging enabled each memory access is turned into 4(!) memory 
accesses. Obviously a 4-fold increase in number of memory accesses is 
impractical.

CPUs have a special cache for virtual to physical translations, called TLB 
(translation lookaside buffer).

On each memory access CPU queries both TLB and caches.

As other caches TLB has limited size and associativity.
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Huge Pages

...

... ...

...

2MPhysical memory: 4K 4K 4K 4K ... 4K

063 12213039 Pointer to root node (CR3)Virtual address

512 items
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Huge Pages

Large pages improve performance in three ways:
● They make TLB misses cheaper by decreasing the number of accessed 

nodes
● They consume fewer resources of TLB
● The OS kernel spends less time in handling page faults

Different sources report different speedups ranging from 6% to 22%. (*)

* Andrea Arcangeli — Transparent Hugepage Support 
https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcan
geli.pdf
Tobiasrieper — Improve your CPU Monero mining...
https://steemit.com/monero/@tobiasrieper/improve-your-cpu-monero-
xmr-mining-up-to-20-with-huge-pages

https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcangeli.pdf
https://events.static.linuxfound.org/slides/2011/lfcs/lfcs2011_hpc_arcangeli.pdf
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TLBs

Haswell i7-4770 Skylake i7-6700 Ryzen 7

4K pages, L1 64 items, 4-way 64 items, 4-way 64 items, full assoc.

4K pages, L2 1024 items, 8-way 1536 items, 12-way 1536 items, 8-way

2M pages, L1 32 items, 4-way 32 items, 4-way 64 items, full assoc.

2M pages, L2 1024 items, 8-way 1536 items, 12-way 1536 items, 2-way (?)

1G pages, L1 4 items 4 items, 4-way 64 items, full assoc.

1G pages, L2 16 items, 4-way
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Pipelining

Assume that we have some boolean circuit.

*

Inputs

Output
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Pipelining

Assume that we have some boolean circuit.

Sometimes the circuit can be split into several 
stages connected by DC-latches.

The clock rate is determined by the stage with the 
slowest signal propagation delay. If the circuit can 
be split into 3 stages with similar propagation delay 
the clock the clock rate can be increased 3 times.

Stage 1

Inputs

Output

DC-latches

Stage 2

DC-latches

Stage 3



57

Pipelining

With pipelining latency is increased only slightly while the throughput is 
increased many times.

OP1

OP1

OP1

OP1 OP2 OP3 OP4 ...Sequential Execution:

Pipelined Execution:

Stage 1

Stage 2

Stage 3

OP2

OP2

OP2

OP3

OP3

OP3

OP4

OP4

OP4

...
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Pipelining

Although modern CPUs are not pure pipelines, they share many 
properties with pipelines.

Many instructions are in fly simultaneously at different stages of 
execution. To some extent modern CPUs can be modelled as pipelines 
of ~20 stages deep.

The problem is the instructions called „conditional branches“. The 
conditional branch instruction is an instruction that selects depending on 
some condition what is executed after it.

Usually it is not known if the condition is true until the late stage of the 
execution of the condition branch.
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Pipelining

Although modern CPUs are not pure pipelines, they share many 
properties with pipelines.

Many instructions are in fly simultaneously at different stages of 
execution. To some extent modern CPUs can be modelled as pipelines 
of ~20 stages deep.
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Example: Pentium M Pipeline

Although modern CPUs are not pure 
pipelines, to some extent they can be 
modelled as pipelines.

According to this definition Pentium M had 
11 stages.

Pentium 4 (Willamette, Northwood) — 20.
Pentium 4 (Prescott, Cedar Mill) — 31.

Haswell — 14-19 stages depending on 
how you count.

Pentium M pipeline
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Conditional Branches

The problem is the instructions called „conditional jumps“. The 
conditional branch instruction is an instruction that selects which 
instruction is executed next after it depending on some condition.

Usually it is not known if the condition is true until the late stage of 
execution of the condition jump.

Conditional jumps have two options depending on which instruction is 
executed after next:
● The next instruction in memory order is executed (in this case the 

jump is called not taken)
● The execution starts with the instruction specified in the conditional 

jump (in this case the jump is called taken)
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Conditional Branches

OP1

OP1

OP1

Pipelined Execution:

Stage 1

Stage 2

Stage 3

OP2

OP2

OP2

OP3

OP3

OP3

OP4

OP4

OP4

OP5

OP5

OP5

Just waiting for a conditional branch to complete causes a pipeline stall 
for as many cycles as the pipeline depth is.

What if instead of stalling CPU some branch is executed and then after 
conditional jump instruction is completed either:
● The instructions in wrong branch were executed, the results of the 

computation need to be discarded, and the execution need to be 
restarted

● The instructions in the right branch were executed, no special action is 
needed.

OP6

OP6

OP6
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Branch Prediction

A branch predictor is the part of a CPU that predicts if the specific 
branch should be taken or not.

If branch is predicted correctly no (or very little) time is wasted. If branch 
is mispredicted the number of cycles corresponding to the depth of 
pipeline is wasted.

Both Intel and AMD publish little information on how exactly their branch 
predictors work.

The branch predictors of modern CPUs work in a such way that no 
simple short sequence of branches exhibit bad behavior.
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Branch Prediction

To circumvent branch predictor I'll base the branching behavior of a 
program on a random number generator.

Linear Feedback Shift Register:

1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1

xor

output
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Branch Prediction

To circumvent branch predictor I'll base the branching behavior of a 
program on a random number generator.

Linear Feedback Shift Register:

unsigned lfsr = 0xace1;
    
for (unsigned i = 0; i != 1000000000; ++i)
{

unsigned lsb = lfsr & 1;  /* Get LSB (i.e., the output bit). */
lfsr >>= 1;               /* Shift register */
if (lsb)                  /* This branch is expected to be */

lfsr ^= 0xb400;        /* often mispredicted */
}
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Branch Prediction

Let's compare the version with a branch with two branchless versions.

unsigned lsb = lfsr & 1;
lfsr >>= 1;
if (lsb)
    lfsr ^= 0xb400;

1.97 seconds

unsigned lsb = lfsr & 1;
lfsr >>= 1;
lfsr ^= 0xb400 * lsb;

1.64 seconds

unsigned lsb = lfsr & 1;
lfsr >>= 1;
lfsr ^= 0xB400 & -lsb;

1.32 seconds

$ chrt -f 99 perf stat ./a.out

Branches are 20% slower than multiplication and 50% slower than bitwise 
and and negation. Anyone disagrees with the result?
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Branch Prediction

$ sudo chrt -f 99 perf stat ./demo-branch-o2

 Performance counter stats for './demo-branch-o2':

       1977,494719      task-clock (msec)         #    0,993 CPUs utilized
                18      context-switches          #    0,009 K/sec  
                 0      cpu-migrations            #    0,000 K/sec
               115      page-faults               #    0,058 K/sec
     6 056 788 736      cycles                    #    3,063 GHz  
     9 012 566 316      instructions              #    1,49  insn per cycle
     1 002 097 766      branches                  #  506,751 M/sec
            58 221      branch-misses             #    0,01% of all branches

       1,990458396 seconds time elapsed

Wait, only 1 billion of branches?
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Branch Prediction

$ sudo chrt -f 99 perf stat ./demo-branch-o2
       1977,494719      task-clock (msec)         #    0,993 CPUs utilized
     6 056 788 736      cycles                    #    3,063 GHz
     9 012 566 316      instructions              #    1,49  insn per cycle
     1 002 097 766      branches                  #  506,751 M/sec
            58 221      branch-misses             #    0,01% of all branches

$ sudo chrt -f 99 perf stat ./demo-mul-o2
       1638,604757      task-clock (msec)         #    0,997 CPUs utilized 
     5 031 149 137      cycles                    #    3,070 GHz         
     7 010 510 218      instructions              #    1,39  insn per cycle
     1 001 738 182      branches                  #  611,336 M/sec         
            31 210      branch-misses             #    0,00% of all branches

$ sudo chrt -f 99 perf stat ./demo-negand-o2
       1320,836315      task-clock (msec)         #    0,997 CPUs utilized
     4 047 430 739      cycles                    #    3,064 GHz        
     8 009 734 001      instructions              #    1,98  insn per cycle 
     1 001 594 794      branches                  #  758,303 M/sec       
            31 070      branch-misses             #    0,00% of all branches
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Conditional Move

.L3:
mov ecx, ebx
shr ebx
mov edx, ebx
and ecx, 1
xor dh, 180
test ecx, ecx
cmovne ebx, edx
sub eax, 1
jne .L3

The compiler replaced the if with a conditional move:

.L2:
mov edx, ebx
and ebx, 1
imul ebx, ebx, 46080
shr edx
xor ebx, edx
sub eax, 1
jne .L2

.L2:
mov edx, ebx
and ebx, 1
neg ebx
shr edx
and ebx, 46080
xor ebx, edx
sub eax, 1
jne .L2
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Conditional Move

GCC has a flag to disable conditional moves:

$ g++ -O2 -fno-if-conversion -fno-if-conversion2 demo.cpp

$ sudo chrt -f 99 perf stat ./demo-branch-noifconv

 Performance counter stats for './demo-branch-noifconv':

       3823,392765      task-clock (msec)         #    1,000 CPUs
                 0      context-switches          #    0,000 K/sec
                 0      cpu-migrations            #    0,000 K/sec
               102      page-faults               #    0,027 K/sec
    11 804 910 900      cycles                    #    3,088 GHz
     7 517 019 848      instructions              #    0,64  insn per cycle
     2 002 890 565      branches                  #  523,852 M/sec
       500 409 199      branch-misses             #   24,98% of all branches

       3,823970930 seconds time elapsed
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Jump Tables

Often writing interpreters and lexers/parsers involves a pattern like this:

for (;;)
{
    switch (*c++)
    {
    case OP_1: /* ... */ break;
    case OP_2: /* ... */ break;
    case OP_3: /* ... */ break;
    case OP_4: /* ... */ break;
    }
}

It turned out this is not the most efficient way to execute interpreter on 
modern CPUs.
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Jump Tables

Often the input is not a random sequence of items. Some items are more 
likely to be followed by others.

static void* const dispatch_table[] =
    {&&do_1, &&do_2, &&do_3, &&do_4};
#define dispatch() goto *dispatch_table[*c++];

do_1:
    /* ... */
    dispatch();
do_2:
    /* ... */
    dispatch();
do_3:
    /* ... */
    dispatch();
do_4:
    /* ... */
    dispatch(); http://www.emulators.com/docs/nx25_nostradamus.htm

E. Bendersky — Computed goto for efficient dispatch tables 
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-
dispatch-tables

http://www.emulators.com/docs/nx25_nostradamus.htm
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Jump Tables

Jump tables helps in two ways
● They reduce the number of jumps
● They helps the branch predictor to detect patterns in the input data

BB_0

OP_1 OP_2 OP_2 OP_1 OP_2 OP_2
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Best Practices

Use PGO
● Unless you write an interpreter (or lexer), let the compiler figure out what 

to do with branches

Some projects use __builtin_expect:
#define likely(x)       __builtin_expect((x),1)
#define unlikely(x)     __builtin_expect((x),0)

There is some controversy around it, but it has some value in case PGO is 
not available.

There is a proposed C++20 attribute [[likely]].

Clang provides __builtin_unpredictable, to mark the branch 
conditions that can not be predicted by hardware logic.
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Example

Consider the following code:

void count_huffman_weights(char const* src, size_t size)
{
    uint32_t count[256] = {};

    for (size_t i = 0; i != size; ++i)
        ++count[src[i]];
}

Source: Counting bytes fast — little trick from FSE 
http://fastcompression.blogspot.ru/2014/09/counting-bytes-fast-little-
trick-from.html
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Example

Consider the following code:

void count_huffman_weights(char const* src, size_t size)
{
    uint32_t count[256] = {};

    for (size_t i = 0; i != size; ++i)
        ++count[src[i]];
}

It turned out that the runtime of this function is highly sensitive 
to the input values.
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Example

Running it on uniform data we get:

$ sudo chrt -f 99 ./a.out -b100 -P0
*** FSE speed analyzer  64-bits, by Yann Collet (Feb 18 2017) ***
Generating 48 KB with P=0.50%
^C-trivialCount               :   1613.9 MB/s

While running it on the data where all values are the same we 
get:

$ sudo chrt -f 99 ./a.out -b100 -P100
*** FSE speed analyzer  64-bits, by Yann Collet (Feb 18 2017) ***
Generating 48 KB with P=100.00%
^C-trivialCount               :    512.7 MB/s
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Haswell Microarchitecture

Source: https://en.wikichip.org/wiki/intel/microarchitectures/haswell
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Haswell Execution Engine

Source: https://en.wikichip.org/wiki/intel/microarchitectures/haswell
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Execution Engine

CPU detects dependencies between instructions and execute 
them in right order.

Slow instructions like memory accesses and division can be 
overtaken by fast ones.

The execution time is determined by
● The critical path
● The availability of execution units
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Dependency DAG

Compilers try to reassociate operations to enable more 
instruction level parallelism and to shorten critical path:

int f(int a, int b, int c, int d)
{
    return a * b * c * d;
}

f:
  imul edi, esi
  imul edx, ecx
  imul edx, edi
  mov eax, edx
  ret
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Dependency DAG

Compilers try to reassociate operations to enable more 
instruction level parallelism and to shorten critical path:

a b c d

*

*

*

a b c d

*

*

*
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Example

void count_huffman_weights(char const* src, size_t size)
{
    uint32_t count[256] = {0};

    for (size_t i = 0; i != size; ++i)
        ++count[src[i]];
}

Let me rewrite our original example into individual operations:

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
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Example

Obviously the branch is predictable. So the execution engine 
get the following steam of instructions:

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
...
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Example

Can the load of the next iteration be reordered with the store of 
the previous? It depends on whether they references the same 
address.

inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
load src[i] → val
load count[val] → tmp
inc tmp
store tmp → count[val]
compare_and_jump
inc i
...
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Speculative Loads

Usually loads doesn't alias preceding stores. Therefore CPU 
tries to start executing them earlier. It does so speculatively. In 
case the load does alias the preceding store execution need to 
be restarted.
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Dependency chain

In non-aliasing case the dependency chain looks like this:

inc i

load src[i]

load count[val]

inc tmp

cmp/jcc inc i

cmp/jcc inc i

cmp/jccstore src[val]

load src[i]

load count[val]

inc tmp

store src[val]

load src[i]

load count[val]

inc tmp

store src[val]
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Dependency chain

In non-aliasing case the dependency chain looks like this:

inc i

load src[i]

load count[val]

inc tmp

cmp/jcc inc i

cmp/jcc

inc i

cmp/jcc

store src[val]
load src[i]

load count[val]

inc tmp

store src[val] load src[i]

load count[val]

inc tmp

store src[val]
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Improved Version

Having this information in mind the original algorithm can be 
improved:

void count_huffman_weights_improved(char const* src, size_t size)
{
    uint32_t count[8][256] = {};

    size = size / 8 * 8;
    for (size_t i = 0; i < size;)

{
        ++count[0][src[i++]]; ++count[1][src[i++]]; ++count[2][src[i++]];
        ++count[3][src[i++]]; ++count[4][src[i++]]; ++count[5][src[i++]];
        ++count[6][src[i++]]; ++count[7][src[i++]];

}
}
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Improved Version

$ sudo chrt -f 99 ./a.out -b101 -P100
*** FSE speed analyzer  64-bits, by Yann Collet (Jan 24 2018) ***
Generating 48 KB with P=100.00%
101#count8                     :   1486.7 MB/s   (49152)

$ sudo chrt -f 99 ./a.out -b101 -P0
*** FSE speed analyzer  64-bits, by Yann Collet (Jan 24 2018) ***
Generating 48 KB with P=0.50%
101#count8                     :   1766.4 MB/s   (267)
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Best Practices

Instruction scheduling is the task of the compiler.
● There is little we can or should do

In some cases compiler assume that pointers can alias while in 
fact they can not. This causes creating a new critical path.
● It's difficult to give a guidance where this may happen.
● Usually can be found by profiling.
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Final Thought

The fastest operation is no operation.
● Often it is easier to eliminate some operations completely 

than to optimize them.
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Thank you!

Thank you!
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